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SUMMARY 

The purpose of the present study is to develop methods for the 

determination of accurate periods of periodic events observed at irregular 

intervals of time, It is pointed out that the powerful theoretical apparatus of 

time series analysis developed for equally spaced data becomes too restrictive 

when such spacing cannot be produced, and hence the need for methods 

applicable directly to unequally spaced ordinates. 

Among various approaches to the above problem, two were selected for 

detailed study as the most promising ones. The first of these is based on the 

it? r.tt ivca harmonic analysis of observations. The technique employed is 

primarily concerned with the non-linear regression analysis of data, It is 

assumed that the residual sum of squares is a function of period and that the 

“best” estimate of the latter corresponds to the minimum value of the residual 

sum of squares. An iterative procedure is then employed to search for the 

above condition. 

The second method is based on the analysis of variance technique for a 

single variable. This method requires that the data be grouped in such a manner 

as to permit the partitioning of the total variance into two components each 

of which is a function of period. The “best” estimate of the period is then 

assumed to correspond to the minimum value of squared deviations measuring 

the variation within groups. As in the first method an iterative procedure is 

required to search for the appropriate minimum. 

Both methods were tested numerically against short runs of real data, 

and found to work in principle. From the computational point of view the 

“analysis of variance” approach is preferable because it involves only the 

very basic arithmetic operations resulting in significant economy and speed. 

However, to yield significant results the method requires that the available 

data record extend over several periods. On the other hand, the “harmonic 

analysis” approach yields useful results with data covering intervals not much 

longer than a full period. This gain is achieved at the expense of computational 

Simplicity. 
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Numerical testing confirmed most features claimed for these methods 

in the main body of the report. In addition, it was found that in practice the 

methods suffer from a number of difficulties such as, the less than adequate 

rate of convergence, occasional appearance of spurious periods, the problem 

of finding an optimum number of data groups, etc. These problems have not 

been considered in detail. 
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1. INTRODUCTION 

The present work is concerned with the problem of finding the period 

of a cyclic phenomenon which has been observed at irregularly spaced 

intervals of time. This problem is a special case of a broader class of 

problems dealing with the spectral analysis .of an irregularly observed time 

series. The subject in question is not one on which there is an extensive 

literature. The existing works on the time series analysis are concerned 

exclusively with techniques which are applicable to observations equally 

spaced in the independent variable. The approach based on this fact permits 

many simplifications in the analysis, leading to theoretical elegance as well 

as to convenient computational schemes. 

There exist, however, physical situations in which it is either 

impossible or impractical to obtain observations at fixed intervals. Difficulties 

of such a nature arise whenever experimental conditions are at least partially 

beyond the observer’s control., In such cases, even if it is intended to produce 

equally spaced observations, the observational technique itself may cause the 

interval to depart by a large amount from its desired value. Note that this 

condition is quite different from that which occurs in sampling of data sources 

in communication and automatic control systems in which the sampling 

mechanism introduces a small timing error known as “time jitter” (Balakrishnan 

1961 -62, Brown 1963). The latter condition is of no concern in this work. 

Consider now the problem of analyzing a time series which has been 

observed at unequally spaced intervals. 

First, it is natural to inquire into the possibility of utilizing the 

powerful theoretical apparatus of time series analysis developed for equally 

spaced data. 

In order to do this, one would have to replace actual observations by 

a new set generated from the original one by interpolation. The subsequent 

choice of one of the numerous existing techniques would depend primarily on 

the parameters to be estimated aswell as on the computational means 

available. 
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For the specific case under consideration, namely the period search, 

many such techniques were described by Stumpff (1937). Among other 

approaches, not treated in the literature, the most natural one appears to 

be based on the representation of data by a trigonometric polynomial and 

subsequent utilization of non-linear regression analysis to determine the 

period. Equal spacing of observations is of crucial importance in such an 

approach because under this condition trigonometric polynomials become 

orthogonal and as a result one achieves significant computational economy 

and speed. 

However, one finds that the results obtained by the above procedure 

depend significantly on the type of interpolation formula employed in 

generating equally spaced data points as well as on the number of “manu- 

factured” points used. The degree of this sensitivity may not be serious in 

some problems, but in others such as those arising in astronomy it is highly 

disturbing. This situation is fully recognized (for the latest example see 

Wehlau, Leung, 1964) and yet it is accepted because it seems to be the best 

thing that one can do. For the reasons stated above as well as the fact that 

automatic computers make the use of equidistant ordinates less important, 

it seems desirable in certain cases to abandon the existing methods of 

analysis, despite their convenience, and attempt to develop methods 

applicable directly to irregularly spaced observations. Unfortunately, as 

soon as the condition of equal spacing is disallowed, one loses all advantages 

which normally accrue from the fact such as, the orthogonality of trigono- 

metric functions. One immediately encounters not only theoretical difficulties, 

but numerical ones as well, particularly in cases employing non-linear 

regression analysis. Consequently, any work in this area must be concerned 

with the development of practical computational procedures in order to yield 

numerical estimates of the desired parameters. 

The initial survey of possible ways of analyzing an irregularly 

observed time series for the presence of certain periods revealed two 

promising methods. The first of these is based on the “iterative harmonic 
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analysis” of the data and the second one on the “iterative analysis of 

variance” approach. In subsequent discussions these two methods will be 

referred to as the “Iterative Harmonic Analysis Method” and the “Iterative 

Analysis of Variance Method”. 

The remainder of this report is concerned with the details of these 

two methods. 



2. DETERMINATION OF PERIODS - ITERATIVE HARMONIC ANALYSIS 

METHOD 

2-l. General Consideration 

Quantities obtained by observation of periodic phenomena are the 

observed response (mechanical displacements, light intensity, number of 

sun spots, rain fall, etc.) and the corresponding instants of time. It is 

pertinent to state that generally the precision with which these two quantities 

can be observed are vastly different. The precision with which time can be 

measured is orders of magnitude higher than that of the other quantities 

mentioned above. This observation has an important implication in the case 

of the Iterative Harmonic Analysis Method, presently under consideration. 

As will be seen later, this method relies heavily on the method of 

least squares for its operation. For this reason the observational data 

must satisfy the Gauss-Markoff theorem on least squares. Briefly this 

theorem consists in the following. Recall that the least squares adjustment 

of data can be used to estimate the best numerical value of a quantity even 

though errors are not necessarily the observational ones. Generally, the 

Gauss-Markoff theorem is concerned with linear estimation of parameters 

appearing in linear equations. Assumptions which must be satisfied are: 

(a) Estimators of parameters of interest are unbiased linear 

combinations of the observed values of the drawn sample. 

(b) The “best” unbiased linear estimator is that one which minimizes 

the variance of the statistical variables (usually the observed 

quantity). The distribution law of the observed quantity is not 

restricted to any particular form. 

If the expected value of a variable is 

E(Y$ =bo tblx(lit...tbk xk.t...tb x 
1 n ni 

(2-l) 
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then the sum of the squares of deviations s is given by 

N 
S = c (Y.-b -bl xii-...-bk \.-... -bnxni)‘Wi 

i=l ’ ,O _ 1 
(2 -2) 

.: 

where Wi are known as weights. Minimization of the variance s results 

in a familiar set of equations known as the normal equations. 

A very important fact to note is that for the Gauss-Markoff theorem 

to be applicable the coefficients xii must have known numerical values. In 

fact, they must be error free. In practice these coefficients are known from 

observations and thus contain the errors of observation. The Gauss -Markoff 

theorem is not applicable to this situation. It must be pointed out that the 

range of its application can be stretched if the coefficients are known with 

such accuracy that they affect the expectation of the variable y to a smaller 

degree than the standard deviation of any individually measured parameter. 

This condition will be satisfied as long as the measurement error of the 

independent variable is much smaller than that of the dependent one. 

Although, strictly speaking, the Gauss-Markoff theorem applies to 

linear parameter estimation, it continues to be valid in non-linear cases pro- 

vided the problem can be appropriately linearized. The subsequent dis- 

cussion assumes that such linearization can indeed be carried out. Before 

proceeding with the main discussion it will be useful to recall that the normal 

equations resulting from the minimization of s have the following form 

b. T \i tb,Cx 
1 i 

li xki t . . . tbk C i xi2t... tbn C xni xi = 

= ~ Yi ‘ici = ‘k (2-3) 

where k = 0, 1, 2,... n; x 
oi 

q 1, and the weights Wi were set equal to unity. 

If the variables are measured from their respective means, equation 

(2-3) transforms into a well-known form given by 
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bl ? (xii - z 1) (rci - -\I + b2 c (x2i - Z2) (5. - Tk) t . . . 
1 1 1 

t bk c (xki - 
i 

%I2 t . . . t bn y (xni - -) (xki - Gk) = 

= C(y. -‘;,(\. -xk) = Ck 
i ’ 1 

b. =T- bl‘;i,-... - bnx . 
n (2 -4) 

For our purposes, it is immaterial which of these two forms is used 

for computation and, therefore, we shall limit ourselves to equation (2-3). 

In the above equations quantities xk can represent either explicit 

independent variables or functions defined in terms of independent variables. 

2-2. Formulation of the Problem 

The periodic processes are most conveniently represented by trigono- 

metric sequences. If the period of the phenomenon is known, its analytical 

description in terms of an approximating trigonometric sequence is obtained 

by deriving the appropriate Fourier coefficients of the sequence. Techniques 

to treat such problems are well known. The converse problem, that of 

extracting as accurate a value of the period as the unequally spaced observa- 

tions will allow is much more difficult and has received little attention. 

The numerical difficulties arising from unequal spacing are com- 

pounded by theoretical problems associated with the fact the desired 

parameter - period - enters the regression equation non-linearly. 

Let it be assumed that the run of observations y.’ as a function of 
1 

time ti can be represented by equation (2-5) 

n 

yi(t., T, t , n) = GA, t c 
1 0 p=l AP cos 

+ BP sin [ 9 tti - to)] . 
I 

(2 -5) 
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It is evident that y., within our scheme, is not only a function of 
1 

time, but also of three additional variables. It should be clear that the 

representation of the observations in terms of our model should improve 

with the number of terms retained in the,sequence. 

If we had the correct values of T and to the problem would be reduced 

to finding coefficients A o, A n 
P 

BP by the straightforward application of the 

method of least squares, Of course, a problem which normally remaina 

unanswered is the value of n. In dealing with normal Fourier series where 

the function y(t) is given by an analytical expression, n can be taken arbitrarily 

large. In our case, y is defined observationally at discrete pointr; therefore, 

one would espect that beyond a certain value of n, coefficients An and Bn are 

unreliable due to a strong effect of observational error. This indicates that 

the sequence (2-5) must be terminated at some n based on a suitable statistical 

test. Such a test will be discussed later. 

In our case, a further complication is the fact that T and t are known 
0 

but approximately. The quantity to represents the origin on the time axis. 

For the purpose of determining the period, to is an arbitrary parameter which 

can be considered free of observational error and therefore left out of further 

consideration. As far as T is concerned an approximate value can always be 

obtained from a plot of the observations. Consider now the question of 

determining the value of the period such that it is “best” in some agreed sense. 

In the first approximation the above problem can be approached as 

follows. Assume that the observed data can be represented by a truncated 

Fourier Series. The amplitudes of the various harmonics can be derived 

irom observations by means of any suitable method such as the method of 

least squares. A complication in this approach is the fact that the period 

enters the regression expression in a non-linear manner and therefore the 

straightforward application of the least squares procedure will not directly 

yield the best value of the period. However, if one makes an assumption 

that in the neighborhood of the true value of the period the sum of the squares 

of deviations of the observed and expected values of the function in question 
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should reach a minimum and furthermore that it behaves according to some 

reasonable power law, one has here the beginnings of an iterative scheme 

which should yield improved values of the period. 

Consequently to meet our objective it is necessary to implement an 

iterative computational scheme based on the regression analysis in which 

one of the parameters to be estimated occurs non-linearly. 

The desired procedure would involve the following steps: 

1. The regression expression assumed to represent the expected 

value of the observed variable is a truncated Fourier Series. 

We start with a constant term plus the first harmonic. The 

initial value of the period can be estimated from observations. 

Note that at this point there are three coefficients to be 

estimated. 

2. Using the estimated value of the period, the coefficients are 

determined by the straightforward application of the method 

of least squares. 

3. The initial value of the period is improved by repeating the 

entire computation for suitably small increments in the period 

and searching for that value of the period which results in a 

minimum value of the residual sum of the squares. 

4. Following this the second harmonic is added to the regression 

expression. At this point the expected value of the observed 

variable is described by five unknown coefficients and the 

period which is to be further improved. Taking the value of 

the period obtained in 3 we again use the least squares method 

to obtain the coefficients in question. 

5. The iterative improvement of the period proceeds now according 

to the prescription given in 3. At the end of this computation 

one has at his disposal two values of the period; one resulting 

from the regression on the first harmonic, the second from the 

regression on the first and second harmonics. It should be 



I 

apparent that the representation of the data by the regression 

expression is not only a function of the period, but also a 

function of the number of harmonics included in the regression. 

However, since we are dealing with the observational data it is 

not possible to include arbitrarily high harmonics in this analysis, 

because at some point the amplitudes of higher harmonics will be 

submerged in observational “noise”. 

6. The highest usable harmonic can be ascertained by means of the 

standard statistical technique of testing for the significance of 

added terms in the regression expression. The most common 

test utilizes the well known F ratio. This test is then used to 

establish whether the addition of the second harmonic produced 

a significant improvement in the data representation. If it is 

found that the improvement is not significant, the computation 

is discontinued and the last value of the period is taken as the 

best value in the sense of the least squares. 

7. On the other hand should the improvement be significant, the 

third harmonic is added and the computations similar to those 

under 4 and 5 are carried out. The F test is now applied to 

ascertain whether the addition of the third harmonic is significant. 

Depending on the result of this test one either terminates the 

computation or proceeds to add the fourth harmonic, etc. 

2 -3. Formal Solution 

Let Tm denote an approximate value of the true period T. The index 

m will denote the sequential order of trial values of T. The starting value of 

T, Tls can be obtained most readily from a plot of the observations. Further - 

more, select a suitable value of t 
0’ 

This value can be selected in a number 

of ways. It can be taken arbitrarily, or it may correspond to a specific state 

of the physical system under study. In the latter case to may be the result 

of a separate computation. If now n is set equal to unity, equation (2 -5) can 

be written as: 

9 



y.(t., T, 1) 2q(t - 
11 

=~AotAlcos 1 
i 

to)/T1 1 t Blsin 1 2n(t - 
i 

tolIT 1 
(2 -6) 

Coefficients A 
0’ 

Al, and B1 are obtained by fitting expression (2-6) to the 

data by the method of least squares. Thus, if equation (2 -6) is taken as the 

equation of condition, the normal equations can be obtained by the use of 

equation (2-3), in which we identify the following quantities: 

b =A 
0 0 

bl = A1 

b2 = B1 

x1 = 
cos 

t. - t [( ) 27r lTO 
i t. - t 

sin 2S 
1 0 

x2 = i( )I T 
i 

Employing these in (2-3) and writing out the result in matrix form, we have 

CA= Cy or 

(2 -7) 

where 

, with N representing the total number of 

observations 

10 



C 
12 

53 

c22 

C 
23 

C33 = y sin2 [277( ‘i;Io)] 

C l G ’ 
Yl = 2 i ‘i 

C 
t. - to 

Y2 
= c y; cos 2n l 

i i( ) Tl 

C = C yl sin 
Y3 i 

[2v ( yo)] 

C = Cyf2 
YY i 1 

The coefficients A A 
0’ 1’ 

Bl are obtained by matrix inversion 

or 

A=+, 
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( 
A 

0 

A1 

B1 
( 

Cl1 

C21 

C31 

C 
12 

C 
22 

C32 

C 
13 

C 
23 

C 
33 

(2 -8) 

. . 
Quantities CIJ are elements of the inverted matrix of the coefficients of the 

normal equations. The inverted matrix has a well-known property that its 

diagonal terms are related to the standard errors of the estimated regression 

coefficients. The off-diagonal elements are related to covariances of the 

estimates. In the above case, these relations are as follows: 

SE (Ao) = 0 

SE (Al) = 0 

SE (Bl) = U 

2 12 
cov (AoAl) = u c 

(2 -9) 

2 13 
cov (AoBl) = (3 c 

2 23 
cov (AlBl) = (5 c 

It is useful to keep in mind that, since the matrix of coefficients of 

the normal equations is symmetric, the inverted matrix must also be 

symmetric. Thus, 

C. = c and C 
ij 

lj ji 
= &i. 

In equations (2-9) u 
2 

is the error variance of the observed y’ values. The 

variance is generally not known a priori. It can be estimated, however, 
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from the residual variation of the observed response y’ about the values 

predicted by the regression relation. The residual sum of the squares 

expressed in the notation of equation (2-3) is given by 

’ (Yiobs - yicom’2 = T ‘iobs 2 - b. y Yiobs - i bl c xii ‘iobs - . . . 
1 

- bn y x * Yiobs = v2. ni 

where y 
iobs 

= observed quantities 

Y* mom 
= quantities computed from the regression equation 

As applied to equation (2-5). this becomes: 

’ (Yiobs - Yicom" = c -A C -A C -B C 
i YY 0 Yl 1 Y2 1 Y3 

2 
- . . . =v. 

For subsequent analysis, it may be useful to recall that 

s (Y 
i iobs - Yicom12 is known as the residual sum of squares and 

(b. 7 y. - bl T; xii y. - . . . - bn c x 
1 

y.) is known as the sum of squares 
1 1 1 ni 1 

due to regression. In terms of these two quantities, the estimate s 
2 

of 

error variance U 
2 

is given by: 

S2 
= -& (Cyy - b. x yi - bl F xii yi - l l l - bn F xni Y$ 

i 

(2-10) 

where N is the number of independent observations and p is the number of 

parameters estimated by least squares. 

If T and to used in (2-6) were known precisely, computation would 

essentially be completed by carrying out operations indicated in equations 

(2-7), (2-8), (2-9), and (2-10). 
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It should be clear from equation (2-5) that, for a fixed value of 
2 

n, v = %Yiobs - y. I2 is a function of both T and t and, therefore, 
i icom 0 

one would expect that for proper values of these parameters, the quantity v 
2 

should reach a minimum. As pointed out earlier, it is only the quantity T 
2 

which can be employed to minimize v . The reason for this is that to serves 

merely as a reference point and, as such, remains in the present scheme as 

an arbitrary parameter which is not subject to error. Let us now consider 

ways of obtaining a minimum of the function v2 (T). 

The most direct approach to this problem is to assume that, in the 

neighborhood of the true value of T, T 
0’ 

the quantity v2 (T) can be represented 

by a quadratic function 

v’(T) = A t BT t CT2 

This assumption is based on the following simple argument. If yi is, for 

the moment, taken to be a function of T alone, then in the neighborhood of 

T we can write 
0 

“i = ‘iobs - ‘icom = (T - ToI . 

From this expression we have 

2 

v2 (T) = c d y. 
2 

i 1 
(T - To)2 = F T2 

TtT 

Thus, v2 (T) has the postulated form, provided we set 

aY. 
2 

c=c+ 
i ( ) 

(2-11) B = -2T c 
O i 

A = T 2 c 
0 i 14 



Having obtained, in some manner, quantities A, B, and C , the point at 
2 

which the minimum of v (T) occurs is given by: 

T=-$ B 
C’ 

(2-12) 

Approximate values of the constants A, B, C can be obtained either from 

their defining expressions (2-11) or, more directly, as follows: 

For some starting values Tl and t the trigonometric sequence 
0 

approximation to y: is computed. 

v2 (T1). 

1 
This computation also yields the quantity 

The above procedure is repeated twice for different values T2 and 

T3, yielding the corresponding values of v2 (T2) and v2 (T3). Consequently, 

we have produced coefficients for a system of three equations in three unknown 

constants. This system is given by: 

V2 =TA 
where: 

2 
v1 

v2= v22 

( > 
2 

v3 

A 

A= B 0 C 

The solution of these equations is given by: 

A,~-IV2 
15 



Explicitly, the inverse matrix T 
-I 

is given by 

T2 T3 T1 T3 
T T 

1 2 

(T3 - TJ (T2 - T1) - (T3 - T2) (T2 - T1) (T3 - T1) (T3 - T2) 

T3 •t 3 T1 t T3 Tl +T2 

(T3 - T1) (T - T1) 

-T1HT2-T1) - (T3-T2HT2-T1) )) 

2 (T3 
- T2) (T2 - Tl) - (T3 - Tl) (T3 - T2) 

1 1 1 

(T3 

Substituting the constants B and C in equation (2-12) will produce an estimate 

of T at which the quadratic approximation to v 2 (T) has a minimum. However, 

this is not the .best minimum which can be obtained under the circumstances. 

To continue the process, the estimate of T just obtained is used to recompute 

the trigonometric approximation to y: and hence a new value of v2 (T) is 

obtained. Hopefully, the fourth value of v2 (T) is smaller than any of the 
2 

three previously obtained values. Therefore, the largest v (T) in the set 

of four available is discarded and the remaining three with the corresponding 

periods are used to recompute A, B, C. Employing these in equation (2-12), 

a new and presumably improved value of the period T is obtained. In addition, 

of course, we produce an estimate of the corresponding v2 (T). This pro- 

cedure can, in principle, be continued indefinitely. In practice, several 

reasons conspire to force suspension of the iteration procedure. First, in 

computers handling a fixed number of digits, the progressive loss of 

significant figures in v 
2 

eventually makes v 
2 

insensitive to small changes 

in T. Second, as the order of approximation to yi increases, the resulting 

improvement in representation ceases to be statistically significant. Con- 

sequently, it is necessary to employ some rules for discontinuing the 

computation. In the following paragraphs, one possible version of such a 

procedure is described. 
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Note that for any order of approximation n, the computation can be 

discontinued when either the period or the variance change by less than a 

preset amount C. Furthermore, in going from the approximation level 

n to the (ntl) 
st 

level, two terms are added, namely those describing the 

contribution of the next higher harmonic. The question which one would like 

to answer is whether the addition of these two terms contributes significantly 

to the description of the periodic process of interest. Such a decision can be 

made on the basis of the analysis of variance as follows: To carry out the 

analysis of variance, it is necessary that the results at two levels of approxi- 

mation be available. Thus, one has at one’s disposal the sums of squares 

due to regression on the first (p-2) variables and due to regression on the 
th st 

P and (p-l) variables. In addition, the residual sum of squares is 

available. Under these conditions the analysis proceeds according to the 

following table : 

Regression on the 

Residual 

Total 

As an example, note that at the second approximation level, the 

quantities listed in the table are given by: 
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E= (2) 
0 

C yi t A1(2) c y’. cos 8 t Bi2) c y’. sin 0 
i l i i l i 

+ AZ(‘) 3 y’. cos 28 
i l i 

t B2(‘) c y’. Sin 2ei - ?j 
i ’ 

II= (1) 
0 

(1) y y’ C y’ cos 8 
i 

i t A 
1 ii i 

t B1(l) C y’. sin 8 
i l i 

The quantities 6 and ?‘) have two degrees of freedom. Furthermore, 

r = cy’.‘- ;A (2) (2) - A 
1 1 

I: 
i 0 ii y’ 

cos 8 12) - 
i 

B 
1 

C 
y’. 1 

sin 8. 
i 1 

_ A2(2) y Y’- COS 28 
i 1 i 

- B (2) c y’ Sin 28. 
2 ii 1 

c =sy: 
2 

YY i l 

In the above, y’ 
i 

are the observed quantities, p represents the number of 

constants determined in the regression analysis, N is the number of 

observations, ei = -qti - to), and superscripts indicate the order of 

approximation. 

Returning now to the table, we note that the F-ratio for the effect 

of added terms is given by: 

512 
F = </(N-p-l) 

Now we make recourse to the table of critical F values computed for 

some desired probability level. Such tables can be found in most standard 

texts on mathematical statistics. A hypothesis is made that there is no 

significant difference between the two variances; that is, that the added 

terms contribute nothing to the description of the data. If, for the assigned 

probability level, the computed F ratio is smaller than the critical value, 

the hypothesis is accepted and the computation is discontinued. Should the 

18 



computed value of F be larger than the critical value, n is stepped by 1 and 

the computation is repeated in its entirety. 

When the computation is discontinued, the corresponding value of T 

is taken as the final value of the period. An estimate of the standard 

deviation of the final value of the period is given by 

J DY iobs - Y icom I2 
UT x 

C (N-2) 
. 

0 

The above expression is based on the following argument. The procedure 

for finding the minimum value of T, T 
0’ 

can be interpreted as being 

equivalent to a least squares solution with one unknown T 
0. 

Here the 

equation 

'Yi = Yiobs - Yicom = (T - To) (2-13) 

serves as the equation of condition which in turn yields 

v2(T) = A t BT t 

as the normal equation. 

of T given by 

CT = - $ 

CT2 (2 -14) 

The quantity v’(T) reaches a minimum for the value 

Here $ can be interpreted as the inverse matrix C 
-I 

of equation (2 -8). In 

this case this matrix contains a single element. Consequently the standard 

error of T can be written as 
0 

SE (To) = 0 = - 

Now u can be estimated from the residual variance by 
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2 UY iobs - y. icom 1 
2 

S= 
N-p-l 

where in the present case p will be equal to 1. Combining these two 

expressions we obtain 0 
T 

given earlier. 
0 

The following remarks are now in order with regard to the proposed 

method. 

The fact that the observations are not equally spaced results in the 

loss of advantages which normally accrue from the orthogonality of the sine 

and cosine functions. Consequently the sums of cross products no longer 

vanish. Furthermore, even if the period were fixed, the addition of higher 

harmonics would require recomputation of all coefficients of the normal 

equations. A similar effect is produced by the fact that the period con- 

tinuously changes. 

These factors conspire to produce an enormous increase in the 

numerical work required because they lead to nondiagonal matrices of 

increasingly larger size and to solutions by iterative procedures. 

2 -4. An Alternate Approach - Differential Corrections Scheme 

The method of searching for the minimum values of the sum of 

squares of deviations is quite awkward in the scheme just described. 

Furthermore the precision of the final value of the period is obtained from 

a questionable interpretation of equations (2-13) and (2-14). 

The computation and interpretation can be made more direct by 

linearizing the problem in such a manner that a differential correction to 

the preliminary value of the period is explicitly included in the appropriate 

regression expression. For this purpose it will be convenient to re-write 

equation (2-5) in the following form 

n 

yi = A0 •t C 
I AP cos mp (t - to) I 

(2-15) 
p=l 
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where the factor l/2 of equation (2-5) has been absorbed in A and m = 2a /T. 
0 

Assume now that an approximate value ,of T is available. This in turn 

implies that for any value of n approximate values of A A B A B 
0’ 1’ 1’ l *” n’ n 

are available since they can be obtained by the straight forward application of 

the method of least squares as outlined in section 2-3. At this point one can 

ignore the fact that for a fixed n there is only one independent variable, namely 

T, and consider y 
i 

to be a function of A’s, B’s, and of m. Assuming further- 

more that the first estimate of T is sufficiently close to its true value so that 

the second and higher powers of the required corrections are negligible, the 

Taylor’s expansion of yi (A0 t AA~, . . . An t AA n, Bn t ABE, . . . m t Am) 

will yield 

a Yi aYi aYi aYi 
Ayi=2T AAot...txAAnf rABn+ am Am 

0 n n 

or explicitly in terms of equation (2 -15) 

n 
Ayi = AA~ t C AA~ cos mp(t -to) t AB 

p=l I 
I 1 P 

sin mp(t-to) 
1 

II 
t 

n 
tc - 

p=l I 
Ap sin [mp (t -to)] + BP cos [mp (t -to)] (t -to) Am 

I 
(2 -16) 

The quantity Ayi is taken to represent the difference between the observed 

value of y and the value obtained from the first approximation. 

Equation (2 -16) is now taken as the new equation of condition in which 

the appropriate parameters AA , . . . 
0 

Am will be estimated by the method 

of least squares. The corrections obtained from these linear regression 

estimates are then used to produce improved values of the starting quantities 

A’s and B’s as well as of the non-linear parameter T. The estimate of 

precision of the resulting value of T is obtained directly from the solution of 

normal equations. Note that 
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am 
Am = - AT = -21?A~ = AT 

T2 
-m - 

aT T 

If now Am as computed from normal equations is given by 

/Am/ = /a+ SEAm/ = m F 

then 

AT = I I 
T2 

at SE - Am 2n 

Therefore 

This completes the discussion of the operations necessary to implement the 

iterative harmonic analysis method. 
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3. DETERMINATION OF PERIOD - ITERATIVE ANALYSIS OF VARIANCE 

METHOD 

3-l. General Remarks 

The fact that the methods of sections 2 -3 and 2 -4 are based on regres - 

sion analysis leads to a large number of computations which rapidly increase 

with both the order of approximation n and the number of data points N. The 

difficulty is further compunded by the necessity of computing a large number 

of trigonometric functions. As a result the required computations become 

combersome and slow. 

The difficulties can largely be eliminated by the method based on the 

analysis of variance technique (e. g. Hoel, 1947, Brooks and Caruthers, 1953 

etc. ) 

To apply this method to our case we attempt to group the available data 

in such a manner that the total sum of squared deviations can be analyzed into 

two components such that one of these will measure the variation of appropriate 

quantities between the groups whereas the other measures the variation within 

the groups. This, of course, represents the basic idea behind the fundamental 

form of the analysis-of-variance technique. Let it be assumed that such a 

grouping is possible, and further, that the component variances are the statistical 

parameters which permit one to make a decision concerning the periodicity of 

the phenomenon. This decision will be based on the fact that if the data contain 

a given period, the variance should exhibit a relative minimum for this period. 

The practical implementation.of this idea takes the following form: 

1. The computation starts by selecting an arbitrary trial frequency 

or period. 

2. All observations are then reduced to a single cycle by the use of 

the assumed period. Effectively, this procedure transforms the 

original independent variable into a new one - the phase. 

3. The entire phase range is now arbitrarily divided into a certain 

number of intervals, each interval containing a certain number of 

observations. 

23 



4. 

5. 

6. 

7. 

We now compute the means and variances of each group. These 

will allow us to partition the overall variance into several com- 

ponents each of which can be utilized to obtain an independent 

estimate of the population variance of individual observations. 

We can now employ the F-test to ascertain whether the estimated 

variances are significantly different. This is equivalent to 

searching for systematic differences between the groups. 

For a given grouping one expects significant differences between 

the groups whenever the value of the period under test is too far 

from its true value. Also, as shown later, the sum of group 

variances is expected to be smaller than the overall variance. 

The difference between these can be systematic or it can arise 

by chance. As before, the F-test can be used to test for its 

significance. 

The entire procedure outlined above is repeated to cover the 

range of periods which are of interest. 

This procedure will indicate whether the data contains a true 

period in the neighborhood of the trail period. To establish an 

improved value a search is conducted over the region in question 

until the variance exhibits a minimum. 

3-2. Formal Description of the Method 

Consider for the moment the problem of data grouping. In particular 

consider a true sine wave defined by Figure 1. Note that for illustrative 

purposes the values of the period, the spacing interval between observations, 

and the number of groups are of no consequence. 
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GROUP 

FIG. I GROUPING OF DATA 

Using the quantity q = (t - to)/P to express the group limits as fractions of 

the period we can write down the following table 

AL lo Aq 

.o-.l o-1 

.l-.2 l-2 

.2-.3 2-3 

Group Index (INDGR) 

0 

1 

2 

. . . . . . . . . 

. . . . . . . . . 

1.0 - 1.1 (10-11) - 10 XP 0 

1.1 - 1.2 (11-12) - 10 XP 1 

1.2 - 1.3 (12-13) - 10 XP 2 

. . . . . . . . . 

. . . . . . . . . 

This table suggests the following rule for assigning a given observation to 

a particular class. To obtain INDGR, express time.associated with the 

observation as a fraction of the period and discard the characteristic, if 

any, of the resulting number. This converts the original variable into a 

new one - the phase. Multiply the phase obtained in this manner by m, the 

number of groups into which the observations are being assigned, and 
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discard the mantissa if any. The resulting integer is then used to denote 

the group index of the observation in question. 

It should be quite clear that the content of a particular group changes 

with the changing value of the period. To clarify ‘consider lst, 2nd, llth, and 

12th points in Figure 1. Following the prescription outlined above one can 

produce the following schematic table summarizing the membership of the 

points in question in the appropriate group. 

1.0 1.1 
POINT 

The varying content of groups, will of course, produce different group 

means and variances which in turn affect the partitioning of the overall 

variance. It should also be noted that if the spacing-of the original observa- 

tions is random the assignment of a particular point will also be random. 

For the time being we shall ignore the fact that in practice the observations 

may not be strictly random and that they may be influenced by systematic 

effects. 

Let us assume now that we have effected classification of data 

according to the above rule. This will result in a table such as the following 

one. 
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GROUP 

. . . 

. . . 

m 

Grand Mean 

x11 Xl2 . . . xl n, 

x21 x22 . . . x2 n, 

. . . . . . . . . . . . 

X 
ml 

X 
m2 .** 

X 
mn 

m 

GROUP MEANS 

x 
1 

- 

x2 
- 
x3 

. . . 

. . . 
- 
X 

m 

X 

- 
The sum of the squared deviations from the grand mean x for any 

given row is given by 2 (x. - x )2 . 
j=l lj 

This quantity can also be expressed 

as 

n. n. 

c’ (x -x)2 

1 2 
= c 

j=l ij j=l I 
(Xij - q t (X. - 

1 
2 1 

(3-l) 

n. n. n. 
1 1 

r (x.. Xi)2 
-2 

1 

= - 

j=l lJ 

t c (X. - x) t 2 2 (x.. -x.)+x) 
j=l l j=l 1J 1 

In the last term the factor (x. - x) does not depend on j. Consequently this 
1 

term can be written as 

n. n. 

2 i (x.. -i$)(X -X) 
j=l ” i 

= 25 4) s’ (x.. - “Q 
j=l lJ 

However, 

n. 
1 

n 
i 

C lx.. -Gi) = G x.. - 2 Gi = niXi -niXi = 0 
j=l ” j=l ‘J j=l 
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Consequently the third term in (3-l) vanishes and we have 

n. n. 

L’ (x -;)2 = c’ (x - q2 
-2 

j=l iii j=l ij 
t ni(x. -x) 

1 
(3-2) 

For each group there is an equation of this form. If all these equations are 

added together one obtains 

n. 
m 1 
c c (x.. - x )2 = F, (X -x)2 

m ni 

i=l j=l lJ i=l 
i i 

t G c (x.. - q2 
i=l j=l ‘.l 

(3-3) 

The left hand side of this equation represents the overall sum of squared 

deviations from the grand mean. Since the unbiased estimate of population 

variance o 
2 

is given by the quantity 

m ni 
c c (x.. - q2 

s2 = 
i=l j=l lJ 

T N-l 

2 
It follows that the left hand side of (3-3) is an estimate of (N - 1) 0 . 

n. 

The quantity z1 (x.. - “i)2 
j=l ‘J 

represents the sum of n. squared deviations 
1 

of observations of a given row about its own mean. As long as the assignment 

of observations into rows is random each of the above sums represents an 

2 
estimate of the quantity (n. - 1) u . 

1 
Consequently the quantity F 2 (x.. - xi)’ 

i=lj=l ‘J 

is an estimate of 

m 

C (n - 1)o 
2 

i 
= (N-,)0’ 

i=l 

Let M now represent the population mean. Consider the first term on the 

right hand side of (3-3). This quantity can be re-written as follows 
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c” -2 
2 

n.(G -x) =F 
i=l 

1 i 
i=l 

ni 
I 
(Gi - M) - (G - MI] 

= F n.(,. - M)2 - 2 I? 
m 

i=l ' ' i=l 
ni(T. - M)(x-M)+ 2 

1 i=l 
ni (x - M)2 

Since (X - M) is independent with respect to index i, the second term can be 

written as 

-2 F n.(,. - M)(x - M) 
m 

= -2(X - M) c 
i=l 11 

i=l 
ni(xi- M) = 2(x - M) F m 

n.x.-M c n. 
i=l ’ ’ i=l ’ 

Note that since the sample mean x is defined as 

m 
‘Lnx 

i=l 
i i 

x = 
N 

(3-5) becomes 

(3-5) 

m 
-2 2 

i=l 
ni(x. 

1 
- M) (x - M) = -2 (x - M) [N; -NM ] = -2N(; -M)2 

Consequently we have 

m m - - 2 
S ni(x. -x) -2N(x-M)t c n.(%-M)2 

i=l 1 
= F n. (x. - M)2 

isI ' ' i=l ’ 

m 
Consider now the expected value of c ni(G. 

1 
- x)’ 

i=l 
, We have 

.[,ni(Gi -z)2]= E[ilni(Gi -M)2] -E[ 2N(; - M)2 

= p n. E[(Ti-Mq-2NE[(G - M)2] t ilniE[i; - -i2] 
i=l ’ 
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At this point let us invoke the following theorem (e. g. Hoel, 1947, p. 6.5) 

Theorem: If x is normally distributed with mean M and variance 0 
2 

and 

random samples of size n are drawn, then the sample means 
- 
X will be normally distributed with mean M and variance o 2/n. 

Note that zi is based on n. observations and x on N observations. The 
1 

application of the above theorem to equation (3-6) yields the following 

expression 

1 m =IT n CT2 2 m ‘J2 .- 
i=l ’ N 

-2Nkt c n 
i=l iN 

(3-7) 
2 

= mu -202tu 
2 

=(m-l)u2 

Consequently the two terms on the right hand side of (3-3) yield additional 

estimates of population variance, namely, 

F - -2 
n. (x - x) 

S2 
i=l 

1 i 

BG = m- l 

n. 1 
s 

2 
r (x.. - q 

2 

i=l j=l 1J 

‘WG = N-m 

It must be noted (e. g. Caruthers and Brooks, p. 140; Kendall, 1950, 

p. 507) that the estimates SiG 
2 

and SWG are independent of each other although not 

of the estimate S 
2 

since the latter incorporates both S 
2 2 

T 
BG 

and S 
WG l 

This 

fact is significant for the subsequent use of the F-test in ascertaining the 

existence of any systematic differences between the groups. 
2 

The quantities S BG 
2 

and S WG measuring the variation between groups 

and within groups provide all the information necessary to ascertain the 

presence of a given period in the data under consideration. 

The convenient standard form of the analysis of variance for the case 

of a single independent variable is summarized in the following table: 
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Sources of the Observed Sums of Squared Degrees of Estimates of 1 

Deviations and the Corresponding Expressions Freedom Variance U2 

Variation Between Groups 

-- 

Variation Within Groups 

Total Sum of Squared 
Deviations 

m 
-2 

C n.(G, -x) = D m-l 
2 DBG 

‘i=l 1 1 BG ‘BG = m-l 

m “i 
C C (x.. -iii)2 =DWG N-m 

i=l j=l ‘3 
I 

m “i 

c c (x.. -;)2 = DT N-l 
i-1 j=l ‘J 

It is of interest to note certain relations between the component variances as 

well as to examine their behavior with changing period. These relations will be 

found useful in practical computational schemes based on the present method. 

3-3. Auxiliary Relations 

A. Relation Between D =, DBG, and DWG 

It is immediately evident from equation (3-3) that the total sum of 

squared deviations D 
T 

equals in value or exceeds the sum of squared deviations 

in m groups DBG or the residual sum of squares D 
WG’ 

Thus, in numerical work DT provides an upper limit which cannot be 

exceeded by either DBG or DWG. Note furthermore that in the problem as 

formulated here the total sum of squared deviations DT is not a function of 

period. The changes in the latter affect only DBG and DWG. This fact can be 

utilized to search for the presence of a given period by examining the behavior 

of either D 
BC Or DWG 

as a function of period and establishing the minima of 

these functions. In practical work one would favor the use of DWG because 

of the larger number of degrees of freedom associated with this quantity. 

It has already been mentioned that only SiG 
2 

and SWG can be used to 

test the significance of differences between the appropriate variance 

e stimate s. This is unfortunate since S 
2 

BG 
is associated with a rather 

small number of degrees of freedom unless the number of groups into which 
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the data is classified is taken deliberately large. The two variances S.: and 
2 

SWG possessing the largest numbers of degrees of freedom cannot be tested 

against each other because they do not represent independent estimates of the 

population variance. 

Generally the variance between the groups is larger than the variance 

within the groups with the exception of those cases for which there is negative 

intraclass correlation (Kendall 1947, pp. 512-513). Such cases are rarely met 

in practical work. Thus, with rare exceptions, we can compute the sample 

value of F, F S, from the ratio 

FS = 
(N-m) . DBG 

(m - 1) DWG 
(3-8) 

If now F > F 
2 2 

s c 
the difference between S 

BG 
and SWG is judged significantly 

different. If on the other hand Fs < FG there is no reason to assume that the 

groups differ systematically from each other. Here FG denotes the critical 

value of F taken from the appropriate tables. 

The condition for acceptance or rejection of the hypothesis of no 

difference between groups can be put in the following convenient form 

(N-m) . DBG 5 F 
(m-1) DWG 

C 

or 

D 3 (N-m) DBG 
WC (m-l) . 

FC 
(3-9) 

In (3-9) the upper inequality sign applies to the case when the reduction in 

D 
WC 

is not significant whereas the lower sign indicates a significant 
2 

difference between SBG 
2 

and SwG . 
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B. Limiting Values of the Period 

From the earlier discussion concerning the determination of group 

indices it is evident that the phase expressed as a fraction of period and 

restricted to the range 0 5 Q 5 1 can be written as 

t-t 
cp= + (3-10) 

In this expression t represents the value of the independent variable 

(e. g. time) associated with the given observation, t 
0 

is the arbitrary reference 

time, P is the period, and Char indicates that only the characteristic of the 

number enclosed in the parenthesis is to be retained. t-t 
The phase determined by equation (3-10) will vanish whenever + 

is exactly equal to its own characteristic that is whenever the mantissa of the 

resulting number is zero. This will occur for P = 10 
-k 

where k is the number 

of decimal digits in (t -to). For example, let (t -to) be expressed as X.XxX. 

If now P = 10 
-3 

we have 

cp = xxxx - Char (XXXX) = 0 

This situation will persist for any value of P smaller than 10 
-k 

provided one 

strictly adheres to the rules of retaining the proper number of significant 

figures in arithmetic operations. It is evident that if these rules are violated 

there will be values of P between 10 
-k 

and 10 
-(k + 1) 

for which equation (3-l 0) 

yields phases having non-zero mantissas. In automatic computation the 

problem of handling significant digits properly is a very inconvenient one 

and therefore it is generally ignored. Consequently phase computed by this 

means for periods less than 10 
-k 

will exhibit fluctuations causing the value 

of Cp to depart from zero. However, let us ignore this practical difficulty 

and assume that the arithmetic is carried out properly. In this case every 

P 5 10 
-k 

will yield zero value for q and consequently our rule for assigning 

data into classes will force every point into one class whose index number is 
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zero. Therefore, all class variances vanish except one, and the value of 

the remaining variance must-be equal to the total variance. The latter 

represents the upper limit of possible variancer. Evidently our procedure 

will fail to produce any variation in D or D in response to periods 
-k BF WG 

smaller than 10 . Such periods, even should they exirt, could not be 

detected by the analysis of variance method. 

The conditions specified above for assigning all observations into a 

single group are not the only ones for which such a situation obtains. 

Note that the group index number INDGR is given by 

INDGR = Char(mcF) = Char 
m(t - toI 

p - mChar 
(3-11) 

t-t 

It is evident that Char + will vanish whenever P > Max 
I I 

t - t where 
0 

Max ( t - to 1 denotes the largest of all the differences (t -to) which can he 

produced in the given data set. Thus 

t - t 
Char 

0 

1 I) 

=o 
Max t -to t, c 

wht*re F is arbitrarily small. Evidently this will also be the case for any P 

given by m(t - to) where m is any integer larger than unity. Under the se 

conditions (3-11) becomes 

m(t 
INDGR = Char 

- to) 

P 

This expression will consistently yield zero values for INDGR if I’.L? 

clcnominator P is equal to or exceeds the value given by 

P = rn Max 
It -lo1 



This fact shows that there exists a maximum value of P beyond which all 

observations will be assigned to the 0 
th 

group and again it will be impossible 

to detect any changes in the component variances. Consequently the region 

of possible trial periods is restricted at both ends. 

C. Behavior of Component Variances SiG 
2 

and SWG 

The total variance SC is not a function of period and therefore it will 

remain constant throughout the analysis. However, the values of S2 and 

GG 

BG 
will depend on the specific composition of individual groups. A change 

i,l these quantities can be effected only when at least one of the x.. ‘s switches 
1J 

to a different group in response to changes in the trial period. 

Consider now the behavior of INDGR (P) as given by equation (3-11). 

The variation of INDGR for m = 2 is exhibited in the following table. 

P 

(t - to) 

. 9(t - toI 

. 8(t - toI 

2/3(t -to) 
__~-. .~. 

. 6(t - to) 
___-- -- 

. 55(t -to) 

. 5(t -to) 

. . . 

-- 
2(t - to)/P INDGR 

2 
I 

2 
I 

0 

3. 332 
I 

2 
I 

1 
I I 

I 

3.636 
I 

2 
I 

1 

4 4 0 

It is apparent that for an observation at time t the index number 

INDGR remains constant in the intervals 

. 
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. . . 

2/3(t -to) < p < (t-to) 

2/4(t -to) < P < 213 (t-to) 

2/5(t -to) < P c 214 (t-to) 

. . . 

Similar table for m = 3 shows that INDGR remains constant in the intervala 

. . . 

3/4(t -to) < P < (t -to) 

3/5(t -to) < P < 3/4(t -to) 

. . . 

In general INDGR changes by 1 for P given by T (t - to), T (t - to), 

F (t -to), etc. The above pattern indicates that these limits can be expressed 

a s 

P 
m (t - toI 

limit. = 
Char 

m(t - toI 

I I 
P 

+l 

(3-12) 

The above quantity yields the lower limit of the range within which 

INDGR remains constant. Clearly the upper limit is given by 

m(t - to)/Char m(t -t )/P. 
I 0 I 

Thus, for a given t, the corresponding INDGR 

remains constant within the range 

P* = 
m(t -toI 

m(t - to) 

I I 

>P > 

Char 
P 

(3-13) 

Within a given data set one expects to find one or more points which 

yield the maximum value of P 
A’ PA-MAX’ 

and similarly points which produce 

36 



the minimum value of P 
B’ p BMIN ’ 

Within the range PBMIN C P < PAMAX 

not a single observation changee its group association and therefore S2 BG 
and 

‘“WC 
remain constant. This shows that the component variances exhibit 

stepwime variation with P. 

D. Location of the Origin, to 

Expression (3-13) indicatee that for fixed values of m, t, and P the range: 

over which the component variances remain constant becomer rmaller with 

increasing t . 
0 

This is clear from the expression for AP = PA - PB, namely 

AP = PA-PB = m(t -to) 

[Char ( mE-to)] - Char1 ‘(~-~o)]+ l] 

For large values of to,1 << Char (m(t - t,)/PI and furthermore 

numerically 

m(t - to) 
Char P 

I t 
m(t - toI 

Consequently AP z 
P2 

=z 
P l m(t - to) 

The range in question can be made as small as desired by taking to 

sufficiently large. 

Note now that if the range over which SiG 
2 

and SWG are constant is 

wide the precision with which the period can be determined is low. It appears 

that the difficulty can be alleviated by choosing to sufficiently large thus 

narrowing the range of constancy of the variances in question, At present it 

is not clear whether the resulting improvement in precision of the computed 

period is real or illusory. Basically it is difficult to see why an arbitrary 

reference number t 
0 

should have any effect on precision with which P can be 

determined since the choice of t does not influence the number of observa- 
0 

tions used, their inherent precision, the length of the time interval covered, 
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or the computational technique employed. These are the quantities which 

would be expected to determine the precision of the final result. 

Finally, numerical tests had shown that the depths of the minima of 
2 

the SWG function which was chosen as the indicator of periodicity are 

functions of m, the number of classification groups. The smaller this number, 

the shallower is the given minimum. 
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4. TESTING OF METHODS 

The techniques described in section 2 and 3 have been tested 

numerically by means of computer programs written for the IBM 1620 data 

processing system. It must be emphasised that the three programs used 

were intended only for testing the essential features of the proposed methods, 

and therefore cannot ‘be considered a practical computing tool for large scale 

data processing by these methods. However, it is believed that the work done 

SO far can serve as the basis for the preparation of practical programs. 

Both versions of the iterative harmonic analysis method were tested 

by applying it to a light curve of the VW Cephei eclipsing system as observed 

by K. K. Kwee at the Leiden Observatory. These observations are shown 

in Figure 2. To avoid unnecessarily lengthy computations, only 54 points 

were selected for processing. These points are shown by open circles. It 

should be noted that if one hopes to determine the period of length P the data 

must cover an interval at least that long. 

The reference time was arbitrarily taken as JD 2436232.2904 and the 

starting value of the period was estimated from the plot of the light curve as 

JD 0.276. 

It was found that for n = 1 the first version of the iterative harmonic 

analysis method diverged, indicating that observation cannot be adequately 

represented by a simple sinusoid. This is not an unexpected result considering 

the fairly complex nature of the curve. 

The iterative process for n = 2 was found to converge, although slowly. 

Repetition of these computations for n = 3,4, and 5 indicated that the 

last significant improvement occurs for n = 4. 

The value of the period obtained at this stage is equal to .278387 days 

and is associated with a standard error of 1.261 x 10 
-3 

days. The commonly 

claimed value determined from observations covering many periods is 

.27831 days (Kwee 1958, Kopal 1956) with the sixth figure being uncertain. 

This is a reasonable agreement despite the fact that the observational material 

employed was vastly different. 
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The differential correction modification of the above method when 

applied to the same set of data, shows much the same behavior. Thus, the 

iteration with n = 1 was fotind to diverge. Computations with successive n 

values exhibit convergence in fewer iteration steps, but the overall computing 

tims increases due to the larger number of coefficients involved in the procesr. 

Clearly the two procedures must exhibit the same termination point. 

For n = 4, the last significant improvement in data representation occurs. The 

period corresponding to this approximation level is ,278377 dayr with a rtandard 
-3 

error of 1.458 x IO . Thus, the results produced by these two versions are 

practically the same. From the numerical point of view the differential cor- 

rection procedure appears to offer little advantage over the unmodified version 

which requires fewer computational steps per iteration. 

Numerical testing of the iterative analysis of variance method proved to be 

more difficult primarily because of different observational requirements. The 

iterative harmonic analysis method appears to be applicable to data covering 

itervals not much longer than a full period. However, the analysis of variance 

<tpproach proved ineffective under these conditions. The performance of the 

latter method appears to improve steadily with the increasing length of the 

riata record. 

In the VW Cephei case, shown in Fig. 2, this method started yielding 

results comparable to those of the harmonic analysis method only when the 

itcrval covered by observations reached a value of 3 to 4 periods. Con- 

sequently the test problem as presently formulated required 150 to 200 points. 

Unfortunately these were not available in one unbroken sequence and for this 

reason had to be taken from different, rather widely separated cycles. The 

above circumstances indicate that the comparison of the two methods by the 

use of the same data set covering the same overall interval is not possible. 

Numerical work with this method revealed all features claimed for 

it in section 3 particularly with regard to the behavior of the component 

variance S 
2 
WG 

in response to changes in P, m, and t 
0. 

In addition a di s - 

turbing feature came to light, namely, the presence of spurious periods. 
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The true period is always found in association with the deepest and 

probably the absolute minimum of SfG . However, the present test revealed 

that other minima exist in the neighborhood of the deepest one and that such 

minima are not associated with real periods. The depth, location, and 

presence or absence of the spurious minima appear to depend at least on m, 

the number of classification groups. 

It must be emphasized that the testing to which this method has been 

subjected is insufficient to have revealed other hidden features which may be 

present. 
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5. CONCLUDING REMARKS 

The present work resulted in two possible methods of determining 

unknown periods of cyclic phenomena which are observed at irregular time 

intervals. The computational feasibility of each has been demonstrated by 

numerical tests. The basic differences between the methods stem from the 

different ways in which the minimum variance is sought. In the harmonic 

analysis method the least squares technique is used to minimize the residual 

variance in response to the number of harmonics used and to changes in the 

period. Since the latter enters the analysis nonlinearly the whole problem 

becomes concerned with the non-linear regression analysis of irregularly 

spaced observations. For these reasons the computational aspects of the 

problem become very cumbersome. Furthermore the method is suitable 

for the determination of only the fundamental period and it is not capable of 

revealing periods which are not related harmonically. However, this method 

has the advantage of yielding useful results from very short runs of data. 

The second method is based on the standard analysis of variance 

technique for a single variable. In this method one of the component 

variances is minimized as a function of the period. From the computational 

point of view this method is very desirable because it involves only the basic 

arithmetic operations in the sense that no special functions need be computed, 

no matrices formed and inverted, etc. However, theoretically this method 

contains a greater number of loose ends than the first method. Most 

prominent among these are the questions associated with the choice of m and 

to as well as the problem of what interactions give rise to spurious periods. 

Finally in both methods one is faced with the troublesome questions of 

convergence of the iterative process and the nature of the solution obtained. 

These problems have been considered in the literature to a limited extent for 

the non-linear regression analyses (e.g. Hartley 1961). As far as it is known 

to this writer problems of the latter type have not been considered for the 

an,ilysis of variance technique. 
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